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ON GRADIENT RICCI SOLITONS AND YAMABE

SOLITONS

Jin Hyuk Choi*, Byung Hak Kim**, and Sang Deok Lee***

Abstract. In this paper, we consider gradient Ricci solitons and
gradient Yamabe solitons in the warped product spaces. Also we
study warped product space with harmonic curvature related to
gradient Ricci solitons and gradient Yamabe solitons. Consequently
some theorems are generalized and we derive differential equations
for a warped product space to be a gradient Ricci soliton.

1. Introduction

A Riemannian manifold (M, g) with a Riemannian metric g is said to
have a harmonic curvature [2] if the formal divergence δR of curvature
tensor R vanishes. It is easily see that M has a harmonic curvature if
and only if (∇XS)(Y,Z) − (∇Y S)(X,Z) = 0 for all vector fields X,Y,
and Z on M , where S is the Ricci curvature of M .

A Riemannian metric g on a complete Riemannian manifold M is
called a Ricci soliton if there exists a smooth vector field X such that S
satisfies the following equation

(1.1) S +
1

2
LXg = ρg

for some constant ρ, where LX is the Lie derivative with respect to X
[1,3,4,6,7,9,11,12]. It is well known that Ricci solitons are self-similar
solitons to the Ricci flow which is introduced by R.S. Hamilton [5].

The Ricci soliton is called shrinking if ρ > 0, steady if ρ = 0 and
expanding if ρ < 0. If X = ∇h for some smooth function h on M , then

Received December 31, 2019; Accepted March 13, 2020.
2010 Mathematics Subject Classification: Primary 53C25 ; Secondary 53B21.
Key words and phrases: gradient Ricci soliton, warped product space, Yamabe

soliton.
The second author was suppoted by the National Research Foundation of Korea

(NRF-2017 R1E1A1A03071005).
** The corresponding author.



220 Jin Hyuk Choi, Byung Hak Kim, and Sang Deok Lee

M is called a gradient Ricci soliton with (h, ρ) [11]. In this case, h is
called a potential function and the equation (1.1) can be rewritten as

(1.2) S +Hess h = ρg.

It is well known that all compact steady or expanding solitons are
necessarily Einstein [4], and a Ricci soliton on a compact manifold has
a constant curvature in 2-dimension [5] as well as in 3-dimension [6].
Moreover a Ricci soliton on a compact manifold is a gradient Ricci soliton
[7], and a compact shrinking soliton is always gradient [10].

On the other hand, in the noncompact case, Perelman [10] has studied
and classified the 3-dimensional shrinking gradient Ricci solitons with
bounded nonnegative sectional curvature.

Since Ricci solitons are natural extension of Einstein metrics, it is
meaningful to construct a non-Einstein gradient Ricci soliton. In this
point of view, we study warped product spaces with gradient Ricci soli-
tons and consider the converse problem for the construction of non-
Einstein gradient Ricci solitons.

A Riemannian metric g is called a Yamabe soliton if there exist a
smooth vector field X and a constant ρ satisfying (r − ρ)g = 1

2LXg,
where r is a scalar curvature of M . If a Riemannian manifold has a con-
stant scalar curvature, then g becomes a trivial Yamabe soliton. Conse-
quently we obtain some theorems generalizing the known results for the
warped product space with harmonic curvature and induce a differential
equation for a warped product space to be a gradient Ricci soliton.

2. Harmonic curvature in warped product spacesM = R×fF

It is well known that [2].

Theorem 2.1. A Riemannian manifold of dimension n has a har-
monic curvature if and only if the scalar curvature r is constant and
D = 0, where

D(X,Y )Z = {(∇Y S)(X,Z)−(∇XS)(Y,Z)}
n−2 + {(Xr)g(Y,Z)−(Y r)g(X,Z)}

2(n−1)(n−2) ,

which is conformally invariant in 3-dimensional case.

Let F be an n-dimensional Riemannian manifold with Riemannian
metric ḡ. Then the product manifold R× F with a Riemannian metric

g̃ =

(
1 0
0 f2ḡ

)
for a positive function f is called a warped product

space of R and F with a warping function f . We denote it by R×f F .
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In the warped product space M = R×fF , the Ricci curvature tensors

S̃ and S̄ of M and F are respectively given by [8, 9]

(2.1)

S̃xy = S̄xy − ff11ḡxy − (n− 1)f2
1 ḡxy,

S̃x1 = 0,

S̃11 = −nf11
f

r̃ = r̄
f2
− 2nf11

f − n(n−1)f21
f2

,

where f1 = df
dt , f11 = d2f

dt2
, the range of indices x, y, z, · · · , is {2, 3, · · · , n+ 1}

and t is a variable on R.

Since the Riemannian manifold with a constant scalar curvature is a
trivial Yamabe soliton, by use of Theorem 2.1 and the fourth equation
of (2.1), we have

Theorem 2.2. If M = R ×f F has a harmonic curvature, then the
scalar curvatures of M and F are constant. Hence M and F become
trivial Yamabe solution.

Proof. Since r̃ = r̄
f2
− 2nf11

f − n(n−1)f21
f2

and r̃ is constant by Theorem

2.1 and that ∂xr̄ = 0, we see that r̄ is constant on F .

Theorem 2.3. If M = R×f F has a harmonic curvature with n > 2,
then
(1) F becomes Einstein if f is not constant.
(2) F has a harmonic curvature if f is constant.

Proof. From the equation (2.1), we obtain 0 = ∇̃xS̃1y = ∇̃1S̃xy =

((1−n)∂1||f1||2−∂1(f4f))ḡxy− 2f1
f (S̄xy−ff11ḡxy−(n−1)f2

1 ḡxy), where

∇̃ and ∇̄ are covariant derivative operators on M and F respectively,
and 4 is a Laplacian operator on R. Then we get S̄xy = f

2f1
((1 −

n)∂1||f1||2 − ∂1(f4f) + ff11 − (n − 1)f2
1 )ḡxy = Aḡxy for A = f

2f1
((1 −

n)∂1||f1||2 − ∂1(f4f) + ff11 − (n− 1)f2
1 ) . Then we see that ∂xA = 0,

where n > 2. Hence F becomes Einstein if f1 6= 0.

On the other hand, if f1 = 0, then S̃xy = Sxy and that ∇̃zS̃xy =
∇̄xS̄zy, we see that F has a harmonic curvature.
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3. Gradient Ricci soliton in M = R×f F

If M = R×f F is a gradient Ricci soliton with (h, ρ), then we have

(3.1)

S̄xy = (ff11 + (n− 1)f1
2 + ρf2 − ∇̄xhy − ff1h1)ḡxy,

∂1hx = f1
f hx,

∇1∇1h = ρ+ nf11
f ,

where h1 = ∂th and hx = ∂xh.

By use of the equation (3.1), we have

Theorem 3.1. Let M = R ×f F be a gradient Ricci soliton with
(h, ρ). If hy is a non-zero function without component of R for a certain
variable y in xi(2 ≤ i ≤ n + 1), then F is a gradient Ricci soliton and
M is a Riemannian product of R and F .

Proof. From the second equation of (3.1), we have ∂1(ln
hy
f ) = 0, so

ln
hy
f depends only on F . Hence we can put ln

hy
f = A(xi) for a certain

function A of xi(2 ≤ i ≤ n − 1) which are variables of F . Therefore

hy = feA(xi) and we can express hy = fC(xi) for C(xi) = eA(xi). Con-
sequently h is of the form h = f(L(xi) + U(b, ŷ)),where L is the partial
integration of C with respect to y and U(t, ŷ) is a function on R × F
with ∂yU = 0. Successively we have hy = fCy(xi) and ∂1hy = f1Cy(xi).
The function Cy(xi) 6= 0 because hy 6= 0 for some y, so we obtain f1 = 0.
This means that M is a Riemannian products of R and F . Then, from
the equation of (3.1), we have ∂1hx = 0, ∇1∇1h = ρ and S̄xy = ρf2ḡxy.
Then we can put h = P (xi)+Q(t) for some functions P and Q on F and
R respectively. So we get ∇1h1 = ∇1Q1 = ρ and that F is a gradient
Ricci soliton.

Theorem 3.2. Let M = R ×f F be a gradient Ricci soliton with
(h, ρ). If h1 = 0 , then F is a gradient Ricci soliton and the warping
function f is given by f = c1cosµt+ c2sinµt.

Proof. Since h1 = 0, the potential function h depends only on F .
From the first and third equation of (3.1), we see that S̄xy = Aḡxy−∇̄xhy
where A = ff11 + (n − 1)f2

1 + ρf2 − ∇̄xhy − ff1h1 and f11 + ρ
nf = 0

respectively. Since the function A does not depend on F , F becomes
a gradient Ricci soliton. Moreover we see that the general solution of
f11 + ρ

nf = 0 is given by f(t) = c1cosµt + c2sinµt for constants c1 and

c2, where we have put µ = ( ρn)
1
2 .
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From the first equation of (3.1), we see that F becomes Einstein if
hy = 0 for all y. Thus we have

Theorem 3.3. Let M = R ×f F be a gradient Ricci soliton with
(h, ρ). If hy = 0 for all y, then F becomes an Einstein space.

For the converse of Theorem 3.3, if we suppose that F is Einstein,
then S̄xy = kḡxy for the constant k = r̄

n . Moreover we can calculate

∇̃1h1 = h11,∇̃1hx = ∂1hx − f1
f hx, ∇̃yhx = ∇̄yhx + ff1h1ḡyx, where h is

a function on R × F . Hence if we consider the equation (2.1) and the
definition of gradient Ricci soliton (1.2), then we have

Theorem 3.4. Let F be an Einstein space with an Einstein constant
k and let f be a positive function on R. If there exist some function h
depends only on R and constant ρ satisfying

(3.2)
nf11
f = h11 − ρ,

k − ff11 − (n− 1)f2
1 = ρf2 − ff1h1,

then the warped product space R×f F becomes a gradient Ricci soliton
with (h, ρ).

The upper Theorem 3.4 provides the method of a construction for
non-Einstein gradient Ricci soliton, in the warped product space M =
R ×f F . In the warped product space, if the warping function is not
constant, then it is called that the warped product space is essential.

Theorem 3.5. Let M = R ×f F be an essential warped product
space with gradient Ricci soliton with (h, ρ). If h1 6= 0, then F is an
Einstein space.

Proof . From the third equation of (3.1), we see that ∇1∇1h only

depends on R. Since ∇1∇1h = ∂2h
∂t2

, we can put ∂2h
∂t2

= k(t). Then we get
h = K(t)+P (x)t+Q(x) from which hy = Py(x)t+Qy(x). From this fact

and the second equation of (3.1), we have f1
f hy = ∂1hy = Py(x). Since

f1 6= 0, hy = f
f1
Py(x). That is Py(x)t+Qy(x) = f

f1
P (x). If we differenti-

ate upper equation with respect to t, then we get Py(x) = ∂
∂t(

f
f1

)Py(x).

Hence we get f11Py(x) = 0, from which ff11 = 0 or Py(x) = 0. But
in the case of ff11 = 0, f1 = constant(c) and consequently f = ct + d.
Since f is a positive function, f becomes a positive constant function.
This is a contradition to f1 6= 0. Hence Py(x) = 0 and that hy = 0.
Then we see that F becomes an Einstein space due to Theorem 3.3.
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4. Gradient Ricci soliton in M = B ×f F

Let (B, g) and (F, ḡ) be n and p dimensional Riemannian manifolds
with Riemannian metrics g and ḡ respectively. Then the warped product
space M = B×f F is the Riemannian manifold with Riemannian metric

g̃ =

(
g 0
0 f2ḡ

)
and warping function f .

If the warped product space M = B ×f F is a gradient Ricci soliton
with (h, ρ), then we get [8]

(4.1)

Sab = ρgab −∇ahb + p
f∇afb,

∂ahx = fa
f hx,

S̄xy = (ρf2 + f4f + (p− 1)||fe||2 − ffaha)ḡxy − ∇̄x∇̄yh,
where the ranges of indices a, b, · · · and x, y, · · · are {1, 2, · · · , n} and
{n+ 1, · · · , n+ p} respectively.

In [9], the authors proved that

Theorem 4.1. Let M = B ×f F be a gradient Ricci soliton with
(h, ρ). If hy 6= 0 all y, then B becomes an Einstein space and ∇b∇af = 0
for all a and b, where ∇ is the covariant derivative operator on B.

For the generalization of Theorem 4.1, we obtain

Theorem 4.2. Let M = B ×f F be a gradient Ricci soliton with
(h, ρ). If hy 6= 0 for some y, then B becomes a gradient Ricci soliton
and ∇b∇af = 0 for all a and b.

Proof. Suppose that hy 6= 0 for some y. Then from the second

equation of (4.1), we see that ∂a(ln
hy
f ) = 0 for all a. Hence we get

hy = feV (z) = fC(z) for C(z) = eV (z), and that h is the form h =
f(P (z) + W (b, ŷ)),where Py = C and V (b, ŷ) is a function on B × R
with ∂yW = 0. From this form, we get hx = f(Px(z) + Wx(b, ŷ)), and
∂ahx = fa(Px(z) + Wx(b, ŷ)) + fWxa(b, ŷ). By use of these equations
and the second equation of (4.1), we have Wxa(b, ŷ) = 0 for all a and
b. Henceforth we can express W (b, ŷ) = E(c) + F (z, ŷ). Then we get
h = f [P (z) + E(c) + F (z, ŷ)]. Hence we obtain

(4.2)
∇ahb = ∇a∇bf [P (z)+E(c)+F (z, ŷ)]+fbEa(c)+faEb(c)+f∇a∇bE(c).

By use of the first equation of (4.1) and equation (4.2), we have 0 =
∂y(∇ahb) = (∇b∇af)Py(z) = (∇b∇af)C(z) because Py = C. Therefore
∇a∇bf = 0, because if C(z) = 0, then hy = 0 which is a contradiction



On gradient Ricci solitons and Yamabe solitons 225

for the assumption. From the equations (4.1) and (4.2), we get∇a∇bh =
fbEa(c)+faEb(c)+f∇a∇bE(c) = ∇a∇b(fE(c)). If we take hB = fE(c),
then we see that Sab − p

f∇afb = ρgab −∇ahB, which means that B is a

gradient Ricci soliton.

In [9], the authors proved that

Theorem 4.3. Let M = B ×f F be a gradient Ricci soliton with
(h, ρ). If hy = 0 for all y, then F becomes an Einstein space.

For the converse of theorem 4.3, if we suppose that F is an Einstein
space with S̄ = kḡ and hy = 0 for all y, then

(4.3)

S̃ab = Sab + p
f∇afb,

S̃ax = 0,

S̃xy = (k − f4f + (p− 1)||fe||2)ḡxy.

Moreover, we can calculate

(4.4)
∇̃b∇̃ah = ∇b∇ah,
∇̃b∇̃xh = 0,

∇̃y∇̃xh = 0.

Hence if we consider the equations (1.2),(4.3) and (4.4), then we can
see that

Theorem 4.4. Let F be an Einstein space with Einstein constant k
and let f be a positive function on B. If there exist some the function
h depend only on B and constant ρ satisfying the following equations

(4.5)
Sab − p

f∇afb = ρgab −∇ahb,
k − f4f − (p− 1)||fe||2 = ρf2,

then the warped product space B×f F becomes a gradient Ricci soliton
with (h, ρ).

If we use Theorem 4.4, we can construct a model space of a non-
Einstein gradient Ricci soliton in the warped product space M = B×fF .
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